Advances in medical imaging-based computer-aided diagnosis for clinical decision-making in gastrointestinal malignancies
引用文本:丘清, 胡磊, 刘再毅. 基于医学影像的计算机辅助诊断在胃肠道恶性肿瘤诊疗决策中的研究进展[J/CD]. 消化肿瘤杂志(电子版), 2025, 17(2):237-243.
作者:丘清,胡磊,刘再毅
单位:南方医科大学附属广东省人民医院(广东省医学科学院) 放射科,广东 广州 510000
Authors:Qiu
Qing, Hu Lei, Liu Zaiyi
Unit:Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical
University, Guangzhou 510000, Guangdong, China
摘要:
胃肠道恶性肿瘤是全球公共卫生的重要威胁。传统医学影像存在海量数据处理效率低下、肿瘤异质性识别有限及医师主观差异等诸多局限性。近年来,计算机辅助诊断(computer-aided diagnosis, CAD)技术展现出重要价值。CAD的关键技术包括影像组学、机器学习和深度学习。传统影像组学依赖于手工特征提取与机器学习模型,存在流程繁琐、模型简单、泛化能力不足等瓶颈。深度学习具有强大的图像自动分割和自动特征提取能力、优秀的表示能力及泛化能力,能够出色地处理大规模和高维度数据。本文重点综述了基于医学影像的深度学习技术在胃肠道恶性肿瘤筛查、诊断、治疗及预后等方面的最新研究进展。
关键词:胃肠道恶性肿瘤;医学影像;计算机辅助诊断;深度学习
Abstract:
Gastrointestinal malignancies
represent a critical global public health challenge. Conventional medical
imaging techniques face multiple limitations, including inefficient processing
of massive data volumes, inadequate identification of tumor heterogeneity, and
inter-observer variability among clinicians. In recent years, computer-aided
diagnosis (CAD) technology has emerged as a pivotal solution, with its core
methodologies encompassing radiomics, machine learning, and deep learning.
Traditional radiomics approaches, reliant on manual feature extraction and
conventional machine learning models, are constrained by labor-intensive
workflows, oversimplified models, and limited generalization capabilities. In
contrast, deep learning demonstrates superior performance through automated
image segmentation, self-optimized feature extraction, enhanced
representational capacity, and exceptional generalization ability, particularly
in handling large-scale, high-dimensional datasets. This review focuses on
recent advancements in deep learning-based medical imaging technologies for
gastrointestinal malignancies, systematically analyzing their transformative
potential in clinical decision-making and precision oncology.
Key words:Gastrointestinal
malignancies; Medical imaging; Computer-aided diagnosis; Deep learning
注:网络优先发布
友情链接

关注我们